Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(10): e2206485, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650990

RESUMO

Pulsed laser fragmentation of microparticles (MPs) in liquid is a synthesis method for producing high-purity nanoparticles (NPs) from virtually any material. Compared with laser ablation in liquids (LAL), the use of MPs enables a fully continuous, single-step synthesis of colloidal NPs. Although having been employed in several studies, neither the fragmentation mechanism nor the efficiency or scalability have been described. Starting from time-resolved investigations of the single-pulse fragmentation of single IrO2 MPs in water, the contribution of stress-mediated processes to the fragmentation mechanism is highlighted. Single-pulse, multiparticle fragmentation is then performed in a continuously operated liquid jet. Here, 2 nm-sized nanoclusters (NCs) accompanied by larger fragments with sizes ranging between several ten nm and several µm are generated. For the nanosized product, an unprecedented efficiency of up to 18 µg J-1 is reached, which exceeds comparable values reported for high-power LAL by one order of magnitude. The generated NCs exhibit high catalytic activity and stability in oxygen evolution reactions while simultaneously expressing a redox-sensitive fluorescence, thus rendering them promising candidates in electrocatalytic sensing. The provided insights will pave the way for laser fragmentation of MPs to become a versatile, scalable yet simple technique for nanomaterial design and development.

2.
Chemphyschem ; 23(10): e202200033, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35380738

RESUMO

Noble metal alloy nanoclusters (NCs) are interesting systems as the properties of two or more elements can be combined in one particle, leading to interesting fluorescence phenomena. However, previous studies have been exclusively performed on ligand-capped NCs from wet chemical synthesis. This makes it difficult to differentiate to which extent the fluorescence is affected by ligand-induced effects or the elemental composition of the metal core. In this work, we used laser fragmentation in liquids (LFL) to fabricate colloidal gold-rich bi-metallic AuPt NCs in the absence of organic ligands and demonstrate the suitability of this technique to produce molar fraction series of 1nm alloy NC. We found that photoluminescence of ligand-free NCs is not a phenomenon limited to Au. However, even minute amounts of Pt atoms in the AuPt NCs lead to quenching and red-shift of the fluorescence, which may be attributed to the altered surface charge density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...